
iOS Release Pipeline
A real world example of a distributed, in-house, release 

pipeline using Jenkins in an enterprise workspace.



generally speaking
It was 5 years ago…



tools
have changed



my memory
is not that good



a bit of context
and your imagination



this is the enterprise
multiple teams, departments, stakeholders



multiple environments 
security reasons* (e.g. access to customer data)



feature branches
one for each user story



develop
on a branch



release
on master



so, how did it look?
an overview



development

new  
feature



development

new  
feature

test summary 
test coverage

monitor quality
feedback loop



feedback loop
must be sort



did we break the build?
merges do that



monitor quality
did we regress?



are tests failing?
being hasty does that



so a day goes like this
nine to five



development

9 a.m. 5 p.m.



hitting a beat
making progress



development

1 a.m. 3 a.m.

OTA download

monitor progress
demo features

nightly

notifications



demo day, every week
monitor progress



development

master
end of  
sprint



development

master
end of  
sprint

enable 3rd party libraries 
test summary 

integration tests 
security tests

test 3rd party libraries
release build



enable 3rd party libraries
jailbreak, code obfuscation, anti tampering, etc.



integration tests
against a staging server



security tests
against a device



development

master

On success

environment configuration

environment builds



environment builds
environment configuration (e.g. SSL)



master

1.0
On  

demand

On  
demand

production build
(live proving, app store)

archive build 
dSYM 

IPA



live proving
and it’s off… for weeks



a big pile of scripts and ideas

the technical details



time
and effort



a script describing 
each build stage

a configuration if you like



Jenkins setup
too much involvement



development
xcodebuild -scheme hello-world -configuration Debug clean build test



nightly
xcodebuild -scheme hello-world -configuration Release -destination “generic/platform=iOS" 

archive -archivePath hello-world.xcarchive



nightly
xcodebuild -exportArchive -archivePath hello-world.xcarchive -exportPath hello-world.ipa 

-exportOptionsPlist exportOptions.plist



environment builds
resource substitution



Staging
environment



~jenkins/environments
a list of environments per project



git ls-tree master \  
--name-only “hello-world”

a list of environments



git clone -b master \  
~jenkins/environments/$1
$1 = project name repository, e.g. “hello-world”



/development 
/staging 
/production



replace files
just a copy



server.plist
resource substitution



SSL Certificate
resource substitution



build settings
conditional compilation



build settings
i.e. hello-world.xcconfig



compiler flags
OTHER_SWIFT_FLAGS = $(inherited) -D SSL_PINNING



-D SSL_PINNING
hello-world.xcconfig



#if SSL_PINNING
conditional compilation



-xcconfig
xcodebuild -scheme hello-world -configuration Debug 

clean build -xcconfig hello-world.xcconfig



~jenkins/configurations
support multiple releases per project



git clone -b hello-world-1.0 \  
~jenkins/configurations/hello-world

support the hello-world-1.x branch



jenkins agents
distributed building for free

https://wiki.jenkins.io/display/JENKINS/Distributed+builds



use tags
to distinguish xcode installations



a scheduler
select the correct configuration  

given a project name and a branch



a distributed build system
to scale



What support did it provide?
with measurements or otherwise



3 teams
across 3 projects



automated builds/releases

• 20 mins to deliver across all environments 

• 15 mins to deliver to production 

• Quality Gates (code coverage, tests run, security)



automated  
unit,integration tests

• 2168 unit tests in 18 seconds 

• 33 integration tests in 2 mins 10 seconds



qnoid

feedback loop

mobile  
dev team

QA  
team

far

long



qnoid

feedback loop

mobile  
dev team

QA  
team

close

short



challenges
keep them in mind



consistency
across environments



“The Burden of 
Knowledge”

Craig Russell

https://medium.com/@trionkidnapper/the-burden-of-knowledge-52cc73508081



reproducing failures
locally



a set of scripts
obscure



disjointed user interface
jobs rather than pipeline*

* Jenkins Blue Ocean since then



not showing the full picture
what settings where used? what environments?



Future work
room for improvement



lots
• record user scenarios to play back for look & feel and 

catch regressions 

• app should install and launch on every supported 
device/iOS version 

• performance testing i.e. memory/CPU usage and trend. 

• poor/no network connectivity scenarios. App shouldn't 
crash, should still be usable. 

• tested on different cellular network operators, proxies, 
network configurations.



lots
• integration tests, spinning up “SIT” environments 

with a set of data 

• accessibility. App should be accessible for people 
with disabilities. 

• usability tests.  

• battery drain. 

• randomness. i.e user data, receiving a phone call 
while using the app, layout changes, localisation



Work of others
to help you go further



“Continuous integration for 
iOS with Nix and Buildkite”

Austin Louden | Pinterest engineer, Core Experience

https://medium.com/@Pinterest_Engineering/continuous-integration-for-ios-with-nix-and-buildkite-ef5b36c5292d



qnoid

www qnoid.com


